# A tibble: 1,064 × 20
country indicator `2000` `2001` `2002` `2003` `2004`
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ABW SP.URB.TOTL 4.16e4 4.20e+4 4.22e+4 4.23e+4 4.23e+4
2 ABW SP.URB.GROW 1.66e0 9.56e-1 4.01e-1 1.97e-1 9.46e-2
3 ABW SP.POP.TOTL 8.91e4 9.07e+4 9.18e+4 9.27e+4 9.35e+4
4 ABW SP.POP.GROW 2.54e0 1.77e+0 1.19e+0 9.97e-1 9.01e-1
5 AFE SP.URB.TOTL 1.16e8 1.20e+8 1.24e+8 1.29e+8 1.34e+8
6 AFE SP.URB.GROW 3.60e0 3.66e+0 3.72e+0 3.71e+0 3.74e+0
7 AFE SP.POP.TOTL 4.02e8 4.12e+8 4.23e+8 4.34e+8 4.45e+8
8 AFE SP.POP.GROW 2.58e0 2.59e+0 2.61e+0 2.62e+0 2.64e+0
9 AFG SP.URB.TOTL 4.31e6 4.36e+6 4.67e+6 5.06e+6 5.30e+6
10 AFG SP.URB.GROW 1.86e0 1.15e+0 6.86e+0 7.95e+0 4.59e+0
# ℹ 1,054 more rows
# ℹ 13 more variables: `2005` <dbl>, `2006` <dbl>, `2007` <dbl>,
# `2008` <dbl>, `2009` <dbl>, `2010` <dbl>, `2011` <dbl>,
# `2012` <dbl>, `2013` <dbl>, `2014` <dbl>, `2015` <dbl>,
# `2016` <dbl>, `2017` <dbl>